

automated non-contact liquid level detection

The VC100 uses ultrasonic technology to measure the height of the sample meniscus without coming into contact with the sample. The volume of each well of a 96 well plate is returned in 1 minute. This easy to use system provides a robust alternative to manual or visual well plate inspection.

applications

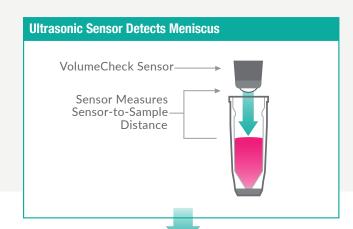
- Low or high sample volume detection in uncapped consumables
- Sample library inventory management
- Assay plate quality control
- QC/QA for assay development and DNA processing
- Detect sample volume for incoming plate samples
- Volume verification for plates before and after liquid handling operations

features

- Scans a 96 well plate in one minute
- Collects and outputs sample volume data for each well position
- Works with common lab solutions such as water, alcohol, DMSO and more
- · Outputs data in easy-to-use LIMS formats

software

- Graphically displays the well plate volumes in columns and rows
- User interface designed for quality control applications
- Project-based software for multiple types of applications and labware
- Select or deselect rows and/or columns to scan for efficient throughput
- Includes plate data calibration table utility
- Easy-to-use Windows based software
- ActiveX toolkit available for integration projects
- Prints plate data reports

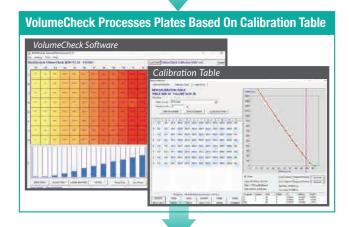

labware compatibility

- Compatible with a wide variety of consumables such as 24, 48, 96 well ANSI/SLAS standard racks, PCR plates, deep well blocks and assay plates
- Vials or tubes up to 92 mm in height
- No consumables works with your sample racks and plates

how it works

VolumeCheck measures sensor-to-sample distance of known sample volumes to create a calibration table. The sensor-to-sample distance decreases as larger amounts of sample are added to the well. Using a reference curve specific to each well plate or tube rack, the VolumeCheck instrument returns the volume of sample or compound in each well position.

VC100™ calibration table


A sensor distance-to-volume calibration plot is generated by scanning known sample volumes in specific well plates or tube racks. The VolumeCheck software provides a utility to efficiently generate the data to establish the distance-to-volume reference tables. The volumes of unknown samples are scanned and extrapolated from a reference table.

system resolution and accuracy

The VolumeCheck system is a general purpose volume detection system for a wide variety of labware. The VolumeCheck liquid level sensor is capable of sensing changes in sample volume in the sub 10 μ L range. Resolution is dependent on labware and lab processes when using the system.

VC100[™] system resolution can be maximized by:

- Centrifuging sample plates to provide a consistent sample level
- Ensuring the reference table is optimized to the consumables and type of sample
- Reducing dimensional variation in labware

	CA B	0.5	1		0.0	- 19		100	36	100	W.	- N-	:0	0.80
Ò	tate & Time of tox	m = 10 June 3014 05	17.83											
		ers/Line/Desking/LVC	Guttiufi/N	w/fotom/st	MA-CRY									
¥ 19	ari Momfar+2	065												
# (B	ADOD THE	SAMPLES TEATUR	VOLME	VOLAVE.	VOLNIN	VDIMAX	YOURTED	DUNED	PEAVE	DEMIN	DISMAK	DISTIDOV		TIME
1	2005 A01	1	1 105			1.0676	. 0	\$7,431	57,433	17.432		c	1/20/2011	
8	2005 801	1.0	1	# 1			9	37.54		17.546			6/20/2014	
8	9000 C04	38	1 0.52	E ERES		0.5226	9	37.69		37.499			4/10/2011	
b.	2003 001	- 1	60	9 - 1		7.8	1.0	37,851		37.611			6/30/2014	
	220 601		40	R: 3	- 9		. 0	371.723	32:722	37.722		0.6	1/30/2014	
141.	1005 667		A	P 4	- 0			21.681		17.089			6/30/2034	
II.	3005 (90)	13.	7	000	0		0	57.635		17.515			6/30/2014	
ш	2005 H03	- 1	2	2	. 0		. 0	57,759		37.755			4/30/2014	
Ħ.	2005 AG2	(4)	I MIM		99,1453	26.1451		\$6.475		31.673			4/10/2014	
16	2005 802	18	3 1003			100.65	(F)	51.4		91.4			4/30/2032	
ts:	2005 C02	4	1 97.2			97.277		31.634					6/10/2014	
16.	2005 (502	3	1 19.25	95.2327	99,2327	99.2327	- 10	51.43	51/49	51.49			1/30/2014	
ļ,t	2005 802	(8)	1 48 65	0 10:456	91,6563	91,4563	. 0	51,841	51,840	[1.84]	53,843		1/10/2014	936
ut:	2005 792	-3.	1 9637	96,376	96.1763	99.3759	0	51.671	5L671	31,671	31.671	1.6	6/10/2014	956
11	2003:602		3 96.51	11 - 96.5157	96,5351	95.5221	100	51,662	51,962	21.662	51.662	(0	6/30/2013	934
16	2005 #492	-1	1 10.38	8 96.3398	99,3098	90.1096		52.054	52/054	12,054			8/30/2014	9.56
H)	2005 A15	13	1 19736			197.3615	30	48.204		48.204			4/20/2024	
12.	2005 803		1 195.2			195.257	1:0	48,274		- 48,274		C	6/30/2914	
K.	2005 (01	1	1, 199.50	4 199.5574	299-5574	199,5574	. 0	48.131		48.111			4/20/2021	
12	2005 003	24	1, 206.50	6 206, 3045		205,3045	- 0	41,501		47.907			4/10/2011	
15	2005 888	1	1 2161	9 216.81	tings	210.89		47.76	43,750	47.757	47.752	110	6/30/2014	5.56
100	2005 613	. 1	1 20131	2 - 204.1152	20C1175	301 1133	. 0	47.97)	AT.073	07.913	47,979		4/10/2010	
rr.	2005 (000	1	2 251.0	193.00	193.082	131.003	0	46.411	48,413	48.413	48.413	C	6/30/2018	956
M.	2005 1422		A TELES	5-192.0025	191,3625	191.0625		(46,581	46.381	49.337	48.347		4/30/2014	9.540

	models	throughput speed	labware supported	48 and 24 well	96 well	384 well
tiol	BioMicroLab VC100	one minute per plate	up to 92mm High	yes	yes	no
	BioMicroLab VC384	30 sec-3 min per plate	up to 92mm High	yes	yes	yes
CG.						

• Dimensions: 28cm x 68cm x 28cm (11"W x 24.5"D x 11.5"H)

Weight: 15 kg (33.25 lbs.) Electrical: 110-220 VAC 50/60Hz

• System Requirements: Windows 10, 8, 7 • 512MB RAM • One USB port

IQ/OQ: Installation Qualification / Operational Qualification Available

